Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells
نویسندگان
چکیده
The use of antibodies in therapy and diagnosis has undergone an unprecedented expansion during the past two decades. This is due in part to innovations in antibody engineering that now offer opportunities for the production of "second generation" antibodies with multiple specificities or altered valencies. The targeting of individual components of the human epidermal growth factor receptor (HER)3-PI3K signaling axis, including the preferred heterodimerization partner HER2, is known to have limited anti-tumor effects. The efficacy of antibodies or small molecule tyrosine kinase inhibitors (TKIs) in targeting this axis is further reduced by the presence of the HER3 ligand, heregulin. To address these shortcomings, we performed a comparative analysis of two distinct approaches toward reducing the proliferation and signaling in HER2 overexpressing tumor cells in the presence of heregulin. These strategies both involve the use of engineered antibodies in combination with the epidermal growth factor receptor (EGFR)/HER2 specific TKI, lapatinib. In the first approach, we generated a bispecific anti-HER2/HER3 antibody that, in the presence of lapatinib, is designed to sequester HER3 into inactive HER2-HER3 dimers that restrain HER3 interactions with other possible dimerization partners. The second approach involves the use of a tetravalent anti-HER3 antibody with the goal of inducing efficient HER3 internalization and degradation. In combination with lapatinib, we demonstrate that although the multivalent HER3 antibody is more effective than its bivalent counterpart in reducing heregulin-mediated signaling and growth, the bispecific HER2/HER3 antibody has increased inhibitory activity. Collectively, these observations provide support for the therapeutic use of bispecifics in combination with TKIs to recruit HER3 into complexes that are functionally inert.
منابع مشابه
Differential Signaling by an Anti-p185 Antibody and Heregulin
To understand the molecular mechanisms by which anti-p185 antibody and the ligand heregulin inhibit tumor growth, we have investigated several signaling proteins and pathways. We report here that anti-p185 monoclonal antibody ID5 induced tyrosine phosphorylation of HER2 in SKBr3 breast cancer cells that overexpress p185. Heregulin b1 induced phosphorylation of both HER3 and HER2. ID5 produced a...
متن کاملAnti-HER-3 MAbs inhibit HER-3-mediated signaling in breast cancer cell lines resistant to anti-HER-2 antibodies.
Two members of the EGF receptor family, HER2 and HER3, act as key oncogenes in breast cancer cells. A MAb against HER2, trastuzumab, interferes with HER2 signaling and istherapeutically effective in humans. Here, we explored the biologic effects of an antibody against HER3 (alpha-HER3ECD) in the invasive breast cancer cell lines MCF-7ADR and MDA-MB-468. Pretreating the breast cancer cells with ...
متن کاملHeregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines
HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, hereguli...
متن کاملZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells.
PURPOSE ZD1839 is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that has shown clinical activity against EGFR-expressing tumors. Our aim was to explore the effects of ZD1839 in breast cancer cell lines expressing different levels of EGFR and the closely related HER2 receptor. EXPERIMENTAL DESIGN We studied the growth-inhibitory effects of ZD1839 in a series of bre...
متن کاملThe anti-HER3 antibody patritumab abrogates cetuximab resistance mediated by heregulin in colorectal cancer cells
We previously showed that tumor-derived heregulin, a ligand for HER3, is associated with both de novo and acquired resistance to cetuximab. We have now examined whether patritumab, a novel neutralizing monoclonal antibody to HER3, is able to overcome such resistance. Human colorectal cancer (DiFi) cells that are highly sensitive to cetuximab were engineered to stably express heregulin by retrov...
متن کامل